Modulkatalog Digitale Medien Master /

Module catalogue Digital Media Master / Media Theory

Media Theory

1st semester

Degree program Media Informatics and Media Design

Module type compulsory optional

Module nummer M-MT

Lecturer in charge of the module Prof. Dr. Andrea Sick

Lecturers Prof. Dr. Andrea Sick structural lectureships at HfK Lecturers from department 9 from the University of Bremen

Comments

Seminar at Hfk Bremen and at Fachbereich 9 Medienwissenschaften Universität Bremen

Contents

The course provides an deepening introduction to technical and aesthetic, as well as to symbolic and communicative qualities of a wide range of media. The historical development and changes of media in correlation with scientific, economic, political and social processes, as well as media's contribution to modes of perception and forms of knowledge will be discussed from a perspective primarily built on cultural studies and mediastudies (mediatheory, mediahistory, mediaanalysis). The scope of this inquiry includes an exploration of media art based on specific works. Current developments will be of special interest in this regard.

Aims

With its focus on offering a foundational knowledge of media studies, the course is designed to help students develop the profound ability to reflect and analyze media theory and media philosophy throughout a wide range of approaches. By providing interdisciplinary perspectives on cultural, theoretical, and social contexts, students gain keen critical thinking skills and a solid understanding of how to engage in technological developments in a responsible way. They are able to develop researchquestions, choose a researchmethod and reflect on it.

Types of examination presentation and scientific paper

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Applicability of the module for other degree programs HfK seminar "Allgemeine Wissenschaften", Master Integrated Design, Fine Arts

Frequency

winter term

Language

English

Workload

Attendance 60 h | Individual Preparation and Recapitulation: 120 h | 180 h

Media Design

Media Design

1st/2nd semester

Degree program Media Informatics and Media Design

Module type required

Module nummer M-MD

Lecturer in charge of the module Prof. Dennis Paul

Lecturers All lecturers from Media Design

Contents

The objective of the course is to provide the students with an overview of the most relevant methods, tools, materials, mechanics and strategies of media-related design. The students will be introduced to the University's facilities and laboratories relevant to the study of digital media.

Aims

Apart from further developing and deepening the students' design skills, this course also aims to bridge or negotiate the differences between the students' understanding of design and its manifold purposes. By discussing and developing smaller design projects, the course will help to evolve a common vocabulary to foster communication in the following master project and master thesis.

List of references

If applicable literatur lists will be handed out according to the topics at the beginning of each course.

Formal requierments none Requirements as regards content none Number of weekly semester hours 8 Workload (ECTS) 12 CP

Frequency any term

Language

English

Workload

Attendance 120 h | Individual Preparation and Recapitulation: 240 h | 360 h

Informatics

Media Informatics

1st/2nd semester

Degree program Media Informatics and Media Design

Module type required

Module nummer M-MI

Lecturer in charge of the module Prof. Dr. R. Malaka

Lecturers Various

Comments

Two courses with usually 6 CP each. If less than 6 CP then the missing CP need to be added to »Free Electives«. If more than 6 CP then »Free Electives« comprises less CP, accordingly

Contents

The courses offer a spectrum of relevant areas in media informatics, i.e. the computer science paradigms, methods, approaches, algorithms and data-structures that are used in digital media and how they relate to the content of the medium. Corresponding to the master level they emphasize scientific principles that underly a large range of applications. The concrete contents are depending on the chosen alternatives. Examples: M-MI/1 Entertainment Computing M-MI/2 Embodied Interaction M-MI/2 Embodied Interaction M-MI/3 Current Topics of Interactive Systems M-MI/4 Cognitive Modeling M-MI/5 Design of Information Systems M-MI/6 Advanced Computer Graphics M-MI/7 Virtual Reality and Physically-Based Simulation M-MI/8 Massively-Parallel Algorithms M-MI/9 Computational Geometry M-MI/10 IT-Management 2

Aims

The students understand the role of computer science methods, in particular algorithms and data-structures in the technology underlying digital media and their relation to the media content. This understanding is formed by studying two specific fields of media informatics, corresponding to a course and acquiring the competence to develop software following scientific methods in that area.

The students can select from these courses in order to develop an individual profile of expertise. The courses are advanced courses that also introduce students to research questions in Digital Media.

List of references

depending on chosen alternatives

Types of examination depending on chosen alternatives

Number of weekly semester hours

depending on the chosen alternatives

Workload (ECTS) 12 CP – see comments

Frequency any term

Language English / Deutsch

Workload depending on chosen alternatives

Entertainment Computing

Degree program 1st/2nd semester

Module type elective

Module nummer M-MI/1

Lecturer in charge of the module Prof. Dr. R. Malaka

Lecturers Prof. Dr. R. Malaka

Contents

Entertainment computing is a multifaceted and complex field of application, which involves, beside the creative aspects, many subareas of informatics. Therefore, learning subjects include interaction design, graphic design and dramaturgy relating to the entertainment computing applications as well as technical basics from the fields of HCI, 3D computer graphics, game AI and game engine design.

Aims

Application-oriented contents from different sectors of entertainment computing are taught. This includes design aspects (e.g., game/story design, interaction design, etc.) and technological knowledge (e.g., game engines, real-time rendering or digital content creation tools). We deal with the application fields of entertainment technologies, e.g., serious games or mixed reality for performances. Participants shall gain further practical experiences with established tools.

Types of examination

regular processing of exercises and a technical discussion

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency generally every 2nd term

Language English

Workload

Attendance (Lectures and Tutorials): 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

Embodied Interaction

1st/2nd semester

Module type elective

Module nummer M-MI/2

Lecturer in charge of the module Prof. Dr. R. Malaka

Lecturers Prof. Dr. R. Malaka Dr. R. Porzel

Contents

In human-computer interaction, we know interfaces such as keyboards, mice and joysticks. In spite of technological progress, the basic patterns of interaction and input devices did not change much during the last few decades. But new trends postulate a radical change towards the »invisible computer« with naturally usable interfaces, so that they are literally invisible. The corresponding interaction artifacts are immediately usable, the users grasp their meaning by interacting with them. Embodied interaction considers the user and the computer system in their context and in their physical environment.

Aims

The ability to create new human-computer interfaces by using algorithms from computer graphics, video analysis and language technology shall be developed. For these applications, knowledge from the fields of computer games, mobile assistance systems and other application fields of digital media is imparted.

List of references

Paul Dourish (2001) Where The Action Is: The Foundations of Embodied
Interaction, MIT Press October 2001.
Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.
Rainer Malaka and Robert Porzel, Design Principles for Embodied Interaction.
In: Mertsching, B.; Hund, M.; Aziz, Z. (eds.): KI 2009.Advances in artificial
intelligence, Springer, Heidelberg, 2009, pp. 711-718.

Types of examination regular processing of exercises and a technical discussion

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency irregular

Language

English

Workload

Attendance (Lectures and Tutorials): 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

Current Topics of Interactive Systems

1st and 2nd semester

Module type elective

Module nummer M-MI/3

Lecturer in charge of the module Prof. Dr. J. Schöning

Lecturers Prof. Dr. J. Schöning

Contents

After having achieved a general overview of the area of Human-Computer Interaction (HCI), learn more on the fundamentals of human-computer interaction and especially post-desktop interfaces. Work together in small teams on a semester-long project. Each week, in the labs, present and discuss work with peers. In the lab will develop their own concept of a NUI and document it in a research paper. The course will start with a brief re-cap on design principles (Fitts' law, Norman: affordances, mappings, constraints, slips, seven stages of action) and processes (Design Process, Evaluation & Statistical Testing) in HCI. The main focus will be on the properties and characteristics of so called post-desktop or natural user interfaces (NUI), including but not limited to: Touch & Mobile Tangibles AR / VR / MR Deformable Interfaces Wearable Interfaces BCI, EEG, »Augmenting Humans«

Aims

»From GUI to NUI«:

- Knowledge of interaction design beyond WIMP
- Knowledge of different development methods
- Ability to carry out work analyses and to solve problems of task distribution between human and computer, ability to develop interfaces beyond WIMP
- Ability to include design patterns in the own development
- Ability to include special features (accessibility, localization, security) into development Professional and communicative competence

List of references

- Wigdor, D., & Wixon, D. (2011). Brave NUI world: designing natural user interfaces for touch and gesture. Elsevier.
- Van Dam, Andries. »Post-WIMP user interfaces.« Communications of the ACM 40.2 (1997): 63-67.
- Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction design: beyond human-computer interaction.
- Recent research papers from ACM CHI, ACM UIST among other

Types of examination

homework, presentation, technical discussion, oral examination

Requirements as regards content

Interactive Systems

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency every summer term

Language English

Workload

Attendance (Lectures and Tutorials): 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

Cognitive Modeling

1st and 2nd semester

Module type elective

Module nummer M-MI/4

Lecturer in charge of the module Dr. T. Barkowsky

Lecturers Dr. Holger Schultheis, Dr. T. Barkowsky

Contents

- cognitive modeling approaches and architectures
- cognitive modeling methodology
- case studies in cognitive modeling
- open questions in the field of cognitive science

Cognitive modeling deals with theoretical foundations of computational cognitive modeling and methods for developing such models based on empirical findings. Different paradigms for modeling are considered. The comparison of the different paradigms allows determining theoretical and methodological differences between different approaches of conceptualization.

Aims

By the end of the course participants should be able to

- understand and discuss the philosophical foundations of cognitive modeling
- explain the motivation for and goals of cognitive architectures
- summarize, interpret, and criticize interdisciplinary research literature
- understand, design, analyze, and assess symbolic cognitive models
- understand, design, analyze, and assess connectionist cognitive models
- understand, design, analyze, and assess dynamic cognitive models
- explain and contrast strengths and weaknesses of different modeling approaches (architectures, symbolic, connectionist, and dynamic approaches)
- explain and apply procedures for estimating model parameters
- understand and apply methods for evaluating cognitive models

List of references

R. Sun (Ed), The Cambridge Handbook of Computational Psychology, Cambridge University Press, Cambridge, UK, (2008).

Types of examination

regular processing of exercises and a technical discussion or oral examination

Requirements as regards content

Simple mathematic and algorithmic thinking.

Number of weekly semester hours

```
4
```

Workload (ECTS) 6 CP

Frequency

generally every 2nd term

Language

 $English \, / \, Deutsch$

Workload

Attendance 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

Design of Information Systems

1st and 2nd semester

Module type elective

Module nummer M-MI/5

Lecturer in charge of the module Prof. Dr. M. Gogolla

Lecturers Prof. Dr. M. Gogolla

Contents

1. Development cycle of information systems

- 2. Object-oriented, graphical design languages
- 3. Approaches to the integrated description of structure and behavior
- 4. Unified Modeling Language UML and Meta Models (UML diagrams describing structure and behavior, Object

Constraint Language OCL, UML specification Environment USE, meta-modeling of UML)

5. Metamodeling of data models and their transformation (syntax and semantics of the ER model, syntax and semantics of the relation model, syntax and semantics of the transformation, instantiation and validation)

In particular, the following theoretical/methodological basics are treated in the context of this content:

- Relationship between UML/OCL and first-order predicate logic
- Validation of formal OCL specifications
- Fundamentals of metamodelling
- Metamodeling of database models and their transformation

Aims

- Be able to express yourself within the terms of the area of information systems. Call and classify system components and their metamodelling basics.
- Have detailed knowledge of information systems, in particular through meta-modeling of the systems. Demarcate modeling languages from programming languages. Differentiate conceptual models from implementation techniques.
- Implementation of models and meta-models. Metamodeling of database models. Can represent domain-specific languages with meta-models. Have developed good language understanding through strict separation of syntax and semantics.

List of references

- Rumbaugh, J., et al.: UML Reference Manual, Addison Wesles, 2004.
- OMG: UML 2.0, 2004.

Types of examination

regular processing of exercises and a technical discussion or oral examination Requirements as regards content Database systems Number of weekly semester hours 6

Workload (ECTS) 8 CP

Frequency generally every summer term

Language English / Deutsch

Workload Attendance 84 h | Individual Preparation and Recapitulation: 156 h | 240 h

Advanced Computer Graphics

1st/2nd semester

Module type elective

Module nummer M-MI/6

Lecturer in charge of the module Prof. Dr. G. Zachmann

Lecturers Prof. Dr. G. Zachmann

Contents

This course will introduce students to advanced and more complex methods and techniques of computer graphics. Some of the topics that were touched upon in the Bachelor course »Computer Graphics« will be covered in more depth. In addition, more and other topics will be covered that were not taught in the Bachelor's course. This approach will both broaden and deepen students' knowledge about the field of computer graphics.

Regular topics are:

- 1. Theory of boundary representations and mesh processing;
- 2. Advanced methods for texturing;
- 3. Generalized barycentric coordinates and parameterization of meshes;
- 4. Advanced shader programming (special effects);
- 5. Real-time rendering techniques (e.g., culling);
- 6. Ray-tracing (photo-realistic images);
- 7. Non-polygonal object representations (modeling);
- 8. Tone mapping.

Aims

Students will acquire:

- understanding of some of the more advanced and complex methods of computer graphics,
- more in-depth knowledge about some of the topics touched upon in the Bachelor's computer graphics course,
- the ability to understand current scientific literature on these topics, and the ability to implement complex methods in these areas,
- a broadened horizon across the exciting and vast field of computer graphics.

List of references

- Andrew Glassner (ed.): An Introduction to Ray Tracing; Morgan Kaufman;
- Peter Shirley: Realistic Ray Tracing; AK Peters;
- Foley, van Dam, Feiner, Hughes: Computer Graphics Principles and Practice; Addison Wesley;
- Tomas Akenine-Möller, Eric Haines: Real-Time Rendering; AK Peters.
- Matt Pharr, Wenzel Jakob, Greg Humphreys: Physically-Based Rendering; Morgan Kaufmann. (Commonly referred to as PBRT)
- Alan Watt, Mark Watt: Advanced Animation and Rendering Techniques. Addison-Wesley

Types of examination

Graded exercises during the course and a short oral examination

Requirements as regards content

Computergraphics, basic programming abilities in C++

Number of weekly semester hours

4

Workload (ECTS) 6 CP

Frequency generally every 2nd term

Language English / Deutsch

Workload

Attendance (Lectures and Tutorials): 56 h | Individual Preparation and Recapitulation: 124 h | 180

Virtual Reality and Physically-Based Simulation

1st and 2nd semester

Module type elective

Module nummer M-MI/7

Lecturer in charge of the module Prof. Dr. G. Zachmann

Lecturers Prof. Dr. G. Zachmann

Contents

Virtual Reality (VR) is at the intersection of computer graphics, physics-based simulation, and human-computer interaction (HCI). VR deals with novel input devices, intuitive and direct interaction, immersion, real-time rendering, and physical-based real-time simulation. The latter is about the most realistic possible simulation of natural phenomena, e.g. Fire, fabric (e.g. as clothing), or the behavior of rigid objects in impact.

VR has now established as an important tool in various application areas (e.g. automotive and aircraft construction and medicine). Many techniques and solutions can also be applied in the field of computer games.

In this lecture, basic methods and algorithms will be introduced.

Subsequently, topics relevant to a complex VR system (e.g., object behavior, collision detection, acoustic rendering, etc.) are discussed.

Topics:

- introduction, terms, immersion, applications
- VR devices: displays, tracking, software design
- stereo rendering
- error-correction: tracking-correction, filtering,
- techniques for real-time rendering
- basic immersive interaction techniques: gesture recognition, navigation, selection, gripping, menus in 3D
- more complex immersive interaction techniques: World-in-Miniature, Action-at-a-Distance, etc.
- collision detection
- force feedback: rendering of forces
- acoustic rendering
- particle systems
- spring-mass systems

The exercises are all practical.

It is expected to be installed on the cross-platform-capable VR system InstantReality. The programming language can be selected by the participants; you can choose from Java, Javascript, and C ++.

You are also welcome to work on the tasks in small teams.

Aims

- know VR technologies and concepts; ability to classify different virtual environments
- know important 3D and immersive interaction metaphors
- know basic algorithms and methods for the simulation of virtual environments

List of references

- William R. Sherman, Alan B. Craig: Understanding Virtual Reality. Morgan Kaufmann, 200
- Don Brutzman, Leonard Daly: X3D: Extensible 3D Graphics for Web Authors. Morgan Kaufmann, 2007.
- Daniel Fleisch: A Student's Guide to Vectors and Tensors. Cambridg

Types of examination

regular processing of exercises and a technical discussion or oral examination

Requirements as regards content

Course: »Computergraphic« is recommended, programming abilities in Java or C++ are required. In the 2nd part you'll need to use ordinary differential equations.

Number of weekly semester hours

4

Workload (ECTS) 6 CP

Frequency winter term

Language English / Deutsch

Workload

Attendance (Lectures and Tutorials): 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

Massively Parallel Algorithms

1st and 2nd semester

Module type elective

Module nummer M-MI/8

Lecturer in charge of the module Prof. Dr. G. Zachmann

Lecturers Prof. Dr. G. Zachmann

Contents

This lecture introduces students to the basic and some advanced methods and techniques of massively parallel algorithms. Some of the topics are:

- the programming environment CUDA C;
- the memory hierarchy and various memory characteristics;
- the GPU architecture;
- parallel reduction;
- coalesced memory access;
- massively parallel matrix algorithms;
- prefix-sum and its applications in image processing;
- texture-filtering;
- parallel sorting (odd-even, bitonic, adaptive bitonic);
- image processing;
- thrust;

Aims

The era of single-core processors is over. Meanwhile, there are new, massively-parallel processors (GPUs) that can handle hundreds to thousands of threads in parallel.

GPUs may become established as a new architecture for the main processors – especially on mobile devices – as they provide more compute power per unit of power. However, the large number of parallel cores poses new challenges for the design of algorithms and software so that they can benefit from the great parallelism.

The main goal of this lecture is to enable students to design algorithms for this massively parallel hardware.

Simulation is now commonly regarded as the third pillar of science (alongside the Experiments and theory). In the simulation, a constantly growing demand for computing power is needed; but this is almost a commodity on the desktop due

to the availability of GPUs.

At the end of this lecture the students will

- have had active experience in the development of software and algorithms for massively parallel architectures;
- know a number of massively parallel algorithm patterns;
- be able to develop own massively parallel algorithms;
- know CUDA.

In the first half of the lecture, students will familiarize themselves with the CUDA parallel programming environment through small and medium-sized exercises and frameworks. In the second half students will work on their own project.

List of references

- Jason Sanders, Edward Kandort: CUDA by Example. Addison-Wesley, Pearson Education.
- Wen-Mei W. Hwu: GPU Computing Gems Jade Edition. Morgan Kaufmann.
- David B. Kirk, Wen-Mei W. Hwu: Programming Massively Parallel Processors. Morgan Kaufmann.
- NVidia

Types of examination

regular processing of exercises and a technical discussion or oral examination

Requirements as regards content

Algorithmic thinking, some knowledge about programming C/C++

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency generally every 2nd term

Language English / Deutsch

Workload Attendance (Lectures and Tutorials): 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

Computational Geometry

1st and 2nd semester

Module type elective

Module nummer M-MI/9

Lecturer in charge of the module Prof. Dr. G. Zachmann

Lecturers Prof. Dr. G. Zachmann

Contents

- quadtrees / octrees, texture compression, isosurfaces, terrain visualization.
- KD-trees, BSP trees, boolean operations on objects, texture synthesis,
- bounding volume hierarchies.
- kinetic data structures, collision detection.
- convex hull.
- voronoi and delaunay diagrams, placement problems, TSP approximation
- range tTree and priority search tree, range queries on the grid.
- Note: the exact composition of the topics is always slightly varied or expanded.

The lecture moves at the edge between computational geometry and computer graphics. Therefore, no practical, but only (simple) theoretical exercises will be asked.

Aims

The students will have

- knowledge and mastery of some very important geometric data structures for computer graphics (and other areas),
- deeper understanding of the reasons why certain algorithms are very efficient,
- knowledge of some exemplary applications of these data structures in computer graphics,
- certain skills in proving correctness and in complexity analysis of geometric algorithms.

List of references

- Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications; Springer
- Franco P. Preparata, Michael Ian Shamos: Computational Geometry: An Introduction; Springer (classical but not outdated yet)

Types of examination

regular processing of exercises and a technical discussion or oral examination

Requirements as regards content

Simple mathmatic and algorithmic thinking.

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency generally every 2nd term

Language English / Deutsch

Workload Attendance 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

IT Management 2

1st and 2nd semester

Module type elective

Module nummer M-MI/10

Lecturer in charge of the module Prof. Dr. A. Breiter

Lecturers Prof. Dr. A. Breiter

Contents

- 1. IT service management Comparing ITIL version 3 to version 2
 - Service Strategy
 - Service Design
 - Service Transition
 - Service Operation
 - Continual Service Improvement.
- 2. Managing data centers
 - System management
 - Information Security management
- 3. IT controlling
 - Key performance indicators
 - IT Balanced Scorecard
- 4. IT Governance Green IT Fair IT?

In particular, the following theoretical / methodological basics are treated in the context of this content:

- Methods of modeling IT service processes (according to ITIL)
- Methods of IT-Controlling (Balanced Scorecards, TCO)
- Methods of IT governance (after COBIT)

Aims

- Describe and analyze tasks, goals and functions of IT service management in theory and practice.
- Explain relevant questions of IT controlling.
- Explain and apply basic elements of data center management.
- Independently develop research questions and answer them with the help of scientific methods.
- Be able to reflect and present own research results.

List of references

- Krcmar, H. (2009). Informationsmanagement (5., vollst. überarb. und erw. Aufl.). Berlin [u.a.]: Springer.
- OGC. (2007). Service Design. Norwich: Office of Government Commerce. The Stationery Office.
- OGC. (2007). Service Strategy. Norwich: Office of Government Commerce. The Stationery Office.
- OGC. (2007). Service Operation. Norwich: Office of Government Commerce. The Stationery Office.
- OGC. (2007). Service Transition. Norwich: Office of Government Commerce. The Stationery Office.
- OGC. (2007). Continual Service Improvement. Norwich: Office of Government Commerce. The Stationery Office.

Weitere Literatur als Reader (elektronisch)

Types of examination

regular processing of exercises and a technical discussion or oral examination

Requirements as regards content IT-Management 1

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency generally every 2nd term

Language English

Workload

Attendance (Lectures and Tutorials): 45 h | Individual Preparation and Recapitulation: 135 h | 180

Integrated and Extended Fields

Free Electives

1st and 2nd semester

Degree program Media Informatics and Media Design

Module type free electives

Module nummer M-UN

Lecturer in charge of the module Prof. Dr. U. Bormann

Lecturers Various

Comments

The field of »Free Electives« nominally comprises 12 CP. The real number of points depends on the alternatives chosen in other fields of electives. Lacking/surplus CP will be charged against these.

Contents

In the field of »Free Electives«, modules from all offers of the University of Bremen and the University of the Arts Bremen can be selected, if their content does not overlap with that of other modules.

Aims

The field of »Free electives« enables students to improve their individual skills within the studies offered by the University of Bremen and the University of the Arts Bremen. Students may select electives from the digital media lectures as well as lectures from other degree programs or on key qualifications. The aims / competences they achieve depend on the lectures they selected.

(Foreign-) Language courses may only be brought in with a maximum of 6 CP.

List of references Depending on the chosen lecture(s).

Types of examination Depending on the chosen lecture(s).

Number of weekly semester hours

depending on the chosen alternatives

Workload (ECTS) 12 CP see comments

Frequency any term

Language English / Deutsch

Workload

Depending on the chosen lecture(s).

Introduction to Digital Media

1st semester

Degree program Media Informatics and Media Design

Module type required

Module nummer M-MA-1

Lecturer in charge of the module Prof. Peter von Maydell Prof. Dr. Rainer Malaka

Lecturers

various

Contents

- Introduction to the program's aims, resources and possibilities.
- Introduction to advanced research on the design and development of digital media
- Introduction to critical positions (impact, limitations, possibilities, responsibilities) within science, art and technology in respect to digital media
- Advanced topics of scientific and artistic work (debate, judgment and writing and presentation in any of the above fields.

Aims

Students will develop a common understanding about research and design of digital media. Students will acquire skills in understanding current debates in digital media and develop critical judgment of the cultural, social, economic and ecologic impact of digital media.

List of references

- Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.
- Chalmers, A. F. (2005). What is this thing called science? (3. ed.). Maidenhead: Open Univ. Press.
- Wardrip-Fruin, N. and Montfort, N. (editors) (2003). The New Media Reader, MIT Press
- others per requirement

Types of examination

Essays, group presentations, documentation

Requirements as regards content none

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency

wnter term

Language

English

Workload

Attendance 60 h | Individual Preparation and Recapitulation: 120 h | 180 h

Special Topics in Digital Media

1st/2nd semester

Degree program Media Informatics and Media Design

Module type compulsory optional

Module nummer M-MA-2

Lecturer in charge of the module

Prof. Dr. Rainer Malaka (Media Informatics) Prof. Dr. Andrea Sick (Media Theory) Prof. Dennis Paul (Media Design)

Lecturers

various

Comments

Free choice from courses offered in Media Design (M-MD), Media Informatics (M-MI), and Media Theory (M-MT), as well as other courses related to media but not the specific subcategory.

Contents

Media Informatics:
M-MI/1 Entertainment Computing
M-MI/2 Embodied Interaction
M-MI/3 Current Topics of Interactive Systems
M-MI/4 Cognitive Modeling
M-MI/5 Design of Information Systems
M-MI/5 Design of Information Systems
M-MI/6 Advanced Computer Graphics
M-MI/7 Virtual Reality and Physically-Based Simulation
M-MI/8 Massively-Parallel Algorithms
M-MI/9 Computational Geometry
M-MI/10 IT-Management 2

Media Theory:

Drawing on exemplary topics, the course conveys methods to analyze media, as well as theories that describe general qualities of media, mediality and media technologies. Current developments will be of special interest in this regard. Relationships to artistic, creative and technological processes will be researched and identified.

Media Design:

The content of the course focuses on more specific topics. The range may extend from topics with a clearly technological focus investigating very specific new, digital or emergent technology from a designers point of view, to topics investigating niche aspects of media design or media art.

Aims

In this module, advanced courses on Digital Media have to be selected. The advanced courses will teach in depth knowledge on selected topics of Digital Media. The module allows to work with, create and understand media close to the level of the current artistic and scientific discussion.

List of references

Depending on the project topic; to be determined in consultation with advisor

Types of examination Project work, project report, presentation, and colloquia

Number of weekly semester hours Depending on the chosen module.

Workload (ECTS) 6 CP

Frequency any term

Language English

Workload Depending on the chosen module.

Introduction to Computer Music

1st and 2nd semester

Module type elective

Module nummer M-MA-2/1

Lecturer in charge of the module Prof. Kilian Schwoon

Lecturers Prof. Kilian Schwoon

Contents

In this module, students will acquire the theoretical basics and practical-technical competences for using computers for music.

Basic methods of digital sound analysis, sound synthesis and sound processing will be designed; their musical potential will be investigated with the help of historical examples. Practical exercises and own concepts are in the focus of the module. Type of course: seminar

Aims

Students develop and realize musical or sound-artistic concepts with different emphases (design of instruments, composition, improvisation, installation).

Types of examination

Regular attendance and active participation, artistic design concept

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Applicability of the module for other degree programs Fine Arts, Integrated Design

Frequency anually

Language English

Workload

Smart Materials

Module type elective

Module nummer M-MA-2/2

Lecturer in charge of the module Prof. Dennis Paul

Lecturers Prof. Dennis Paul External Lecturers

Contents

In this module, students will deal with a group of materials that can be used for medial productions due to their special properties such as changeability. After the stocktaking of existing materials (e. g. thermochromatic colours, nitional wires or electroluminiscent surfaces) and their application, they will develop ideas and scenarios for their own artistic-creative productions.

Type of course: seminar Type of learning:attendance courses

Types of examination regular attendance and active participation Presentation and documentation of results of the given assignments

Requirements as regards content

none

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Applicability of the module for other degree programs Integrated Design and Fine Arts

Frequency anually

Language English

Workload

Media Art/Media Aesthetics

1stand2nd semester

Module type elective

Module nummer M-MA-2/3

Lecturer in charge of the module Prof. Dr. Andrea Sick

Lecturers

Prof. Dr. Andrea Sick lecturer at FB9 University teaching appointments

Contents

This module gives an overview over the most important approaches of media art in the fields of aesthetics and art development.

The analysis of arts from the point of view of media science is taught. The correlation between arts and media and the medial procedures of artistic practice is to be made understood.

Type of course: seminar

Type of learning: attendance courses and self-study

Types of examinationRegular attendance paper/presentation term paper

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Applicability of the module for other degree programs General Sciences on Integrated Design and Fine Arts

Frequency

anually

Language English

Workload

Forms of Intermedial Design

Module type elective

Module nummer M-MA-2/4

Lecturer in charge of the module Nuri Ovüc

Lecturers Nuri Ovüc teaching appointments

Contents

In this module, the students learn how to conceive and develop cross-media events resp. projects. The focus is on the interplay of the different media – new visual contributions/languages/installations will be produced. The contributions will then be integrated in different medial environments.

Type of course: seminar and tutorial Type of learning: frontal

Types of examination artistic/design concept, term paper Number of weekly semester hours

Workload (ECTS) 6 CP

Frequency anually

4

Language English

Workload

Project Preparation

2nd semester

Degree program Media Informatics and Media Design

Module type required

Module nummer M-MA-31

Lecturer in charge of the module Prof. Dr. G. Zachmann Prof. Ralf Baecker

Lecturers

various

Contents

Students will acquire knowledge and skills regarding methods, technologies and processes that are required for module MA-32 (Master Project) in the following semester. The specific knowledge and skills will depend, to some degree, on the specific topics students will choose for their module MA-32.

To ensure a targeted selection of the concrete contents for this module (MA-31), the M.Sc. students in Media Informatics will communicate closely with the teacher and advisor of their chosen MA-32 module. In any case, the knowledge and skills will center around Digital Media, Media Design, Media Theory and Media Informatics. In the case of the Media Informatics students, typical knowledge and skills to be acquired will be in the fields of Visual Computing, Virtual Reality, Interaction Design, Human-computer Interaction, statistical methods, to name but a few.

M.A. students in Media Design will choose as Project Preparation one of the offered seminars from the theory pool at the HfK (Media Theory, Philosophy, Art History, Design Theory) or a seminar in cognitive science at the University which fits to their project subject. The students have to coordinate their choice closely with their teachers to ensure an adequate content for their MA-32 module primarily at the HfK.

In addition, the Master students in Media Informatics and in Media Design will research the state-of-the-art and identify the research challenges they expect to face in MA-32.

M.Sc. students are required to focus on Media Informatics in their work.

Aims

The students are able to define and outline a project dealing with complex problems of digital media. They acquire knowledge in the relevant fields of media design, media informatics, and media theory, which is leading to a successful Master's project.

List of references

Depending on project topic, to be determined in consultation with advisor.

Types of examination

Presentations and papers, sometimes exams, depending on the advisor of MA-32.

Number of weekly semester hours

4

Workload (ECTS) 6 CP

Frequency summer term

Language English

Workload

Attendance 54 h | Individual Preparation and Recapitulation: 126 h | 180 h

Master Project

3rd semester

Degree program Media Informatics and Media Design

Module type required

Module nummer M-MA-32

Lecturer in charge of the module Prof. Dr. G. Zachmann Prof. Ralf Baecker

Lecturers

various

Comments

At the HfK each Master Project is supervised by two or more advisors with different areas of expertise (e.g. media theory, design practice, interface design or media art).

Also for M.A. students additional seminars in media- and design theory and technic

Contents

Working on a complex problem with relevance to society, science, technology art or design, the students concern themselves with:

- Organization of both their individual work and / or teamwork
- Analysis of the problem
- Definition of objectives
- Research and presentation of the state of the art
- Identification of suitable technology (e.g. hardware, software libraries, tools)
- For M.Sc. students design of a solution (e.g. software architecture, algorithms, user interface)
- For M.A. students design of a solution, possibly in a wide sense of the term (e.g. comment, intervention etc.)
- Implementation
- Evaluation of the results (e.g. user studies, statistical analysis, presentation, exhibition)
- Preparation of final results for publication or other forms of public display, exhibitions, demonstrations, or other forms of public display.

M.Sc. students are required to focus on media informatics in their work;

Aims

The students are able to work theoretically, empirically, and practically on complex problems of development in a mediumsized, self-organized team or individually. They do not only apply existing knowledge in science, the arts and design, but also develop new concepts and methods.

List of references

Depending on the project topic; to be determined in consultation with advisor

Types of examination

Project work, project report, presentation, and regular colloquia

Number of weekly semester hours

20 (Media Informatics) | 20 (+ 2 Tutorial) (Media Design)

Workload (ECTS) 30 CP

Frequency winter term

Language

English

Workload

Media Informatics: Attendance (plenum): 280 h | work on the project: 620 h | 900 h Media Design: Attendance (plenum & tutorial): 308 h | work on the project: 592 h | 900 h

Master Thesis

Plenary

4th semester

Degree program Media Design

Module type required

Module nummer M-MA-42

Lecturer in charge of the module Petra Klusmeyer

Lecturers various

Contents Presentation and discussion of the research and design questions and working steps of the master thesis.

Aims

Regular presentation and discussion of contents and methodology with the tutoring lecturers and the fellow students.

Types of examination Successful development of the design/artistic research question, topic and approach underlying the master thesis.

Formal requierments

Applying for the master thesis and/or plenary requires providing proof of at least 60 CPs.

Number of weekly semester hours 4

Workload (ECTS) 6 CP

Frequency summer term

Language English

Workload Attendance 56 h | Individual Preparation and Recapitulation: 124 h | 180 h

Master Thesis

4th semester

Degree program Media Informatics and Media Design

Module type required

Module nummer M-MA-4

Lecturer in charge of the module Prof. Dr. U. Frese Petra Klusmeyer

Lecturers various

Comments Additionally the plenary M-MA-42 for M.A. students on media design.

Contents

Development and preparation of an original and comprehensive creative-artistic final thesis including a research proportion. Students link creative-artistic and scientific competences applying methods from science, arts and design.

Aims

The students are able to work theoretically, empirically, and practically on complex problems and innovative solutions in the field of digital media production and use. To this end, they employ methods of science as well as of the arts and artistic design. They work on their own initiative, set up schedules, and meet deadlines.

List of references

Depending on project topic to be determined in consultation with advisor

Types of examination

Master thesis:

- Subject matter related to the selected topic, typically corresponding to the respective master's project
- Scientific research or development of artistic methods in the context of a complex problem in the field of digital media
- Applicat

Formal requierments

Successful development and working on research and design questions aiming at the master thesis. Applying for the master thesis and/or master colloquium requires providing proof of at least 60 CPs.

Number of weekly semester hours

none

Workload (ECTS) 30 CP (Media Informatics) | 24 CP (Media Design)

Frequency

could be appointed anytime with the advisor

Language

English

Workload

Media Informatics: Editing the Task: 840 h | Preparation and conduct of the colloquium: 60 h | 900 h Media Design: Editing the Task: 660 h | Preparation and conduct of the colloquium: 60 h | 720 h