Bremen

VR CoralReef

G. Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de

Bremen

Motivation: Endangered Coral Reef

Nearly 3/4 of the world's reefs are gone or threatened

[Ocean Conservancy: "Coral Reefs: Critically Endangered", 2008, http://act.oceanconservancy.org/site/DocServer/Coral_final.pdf?docID=4501]

Bremen

- Cooperation with the Center for Tropic Marine Ecology Bremen (ZMT)
- VR environment for showing simulation provided by ZMT to lay people (decision-makers, NGO's, farmers, ...)

- This project is right for you, if
 - You study computer science, you know C++ and want to gain some practice in computer graphics programming
 - You study design/media and you are a creative mind with skills in 3D design & modelling (and/or 2D)

Main Goal of the Project

• Create a highly immersive underwater simulation of a coral reef

[Image Source]

- Realistic visualisation of the effects of climate change on coral reefs
- Bring the virtual reef to life with fishes and special effects
- Design of a complete and unique immersive user experience
 - Stereo rendering in Oculus
 - User interaction with VE using Kinect and/or other devices

[Image Source]

Project Base Point

- Complete, existing framework (implementing SW infrastructure):
 - Integration of ZMT simulation
 - Interaction using Kinect
 - Random fish movement and plant spawning
 - Procedural generation of 4 species of corals
 - Based on the Ogre 3D graphics engine (in C++)

- Introduction to:
 - Coral growth and fish interaction (by ZMT)
 - Computer graphics and/or C++ (on demand)

Project Tasks

- Programming of the VE logic:
 - Generic coral generation
 - Porting to Unreal engine (TBD)
 - Interaction with VE & simulation
 - Design and implementation of Al's for behaviour of fish (e.g., flocking, eating)
 - Interaction between fish & corals
 - Procedural generation of terrain

[Image Source]

- Modelling of VE:
 - 3D modelling and animation of realistic animals, plants, artifacts, and other environmental objects using tools like 3DSMax, Blender, Photoshop
 - Texturing (creating textures, uv mapping, ..)
 - Sound

[Image Source]

Project Infos

- One-semester project (with regular work in our lab)
- Winter semester 16/17
- Prerequisites:
 - My course "Advanced computer graphics" in SS16
 - Is the preparation course for DM students
 - Is the "Projekt-begleitender Kurs" for CS students
 - Programming skills in C/C++ and/or modelling skills
- Nice-to-have:
 - My course "Virtual Reality and Physically-Based Simulation"
- The envisioned project team: mix of CS & DM students
- Further info (Schnuppertermin): TBD, Linzerstr. 9A, 3rd floor, CGVR lab
- Great opportunities for bachelor and master theses

Ready to dive into another world with us?

[Image Source]

Meet us <<TBD>> at Linzer Str. 9A, 3rd floor

zach@cs.uni-bremen.de

Motivation

Project Targets